
pive by writy $u(t)-e_{2} u_{2}(t)+e_{2} u_{y}(t)+e_{2} u_{x}(t)$ results are 'vertor esprasion'; igevoly ovelid Importhit for o
$\left(x^{\prime} \cdot y^{\prime}=a^{\prime} \cdot v_{\text {ta }}^{\prime}\right.$
$(u x)^{\prime}=\Delta x+0+u x v$
${ }^{u}\left(x^{\prime}, x^{2}, x^{3}\right)$

地
\square

$u, t=t(a)$
$x_{1}(u)=x_{1}(t(a)$

$$
\begin{aligned}
& \left.u\left(x^{\prime}, x ; x\right)=u^{4}(x, x, 2)^{2}\right)\left(x^{2}, 2,2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon^{\prime}=\frac{1}{2} m\left[\underline{x}^{\prime} \cdot \underline{\underline{x}^{\prime}}\right]^{\prime} \\
& =\frac{1}{2} m\left[\underline{x}^{\prime} \cdot \underline{x}^{\prime \prime}+\underline{x}^{\prime \prime} \underline{x}^{\prime}\right] \\
& =\underline{x}^{\prime} \cdot m \underline{x}^{\prime \prime} \quad \underline{x}^{\prime \prime} \cdot \underline{x^{\prime}} \\
& \begin{aligned}
& =\underline{X} \cdot \underline{E} \\
\varepsilon^{\prime} & =\sqrt{x} \cdot q\left(\underline{\left.E^{\prime} \times \underline{B}\right)}\right.
\end{aligned}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.t_{5}=1 \times(x)-20\right) \mid=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4(f)}{x \rightarrow}=f(t)=f^{\prime}(t)
\end{aligned}
$$

$$
\begin{aligned}
& u^{\prime}(t)=0 \text { if } u \text { is antant } \\
& (\alpha u+\beta v)^{\prime}(t)=\alpha u^{\prime}+\beta v^{\prime} \\
& (f \cdot)^{\prime}(t)=f(t) \cdot w^{\prime}(t)+f^{\prime}(t) w(t) \\
& \frac{d}{d t} u\left(f(f)=\frac{d u}{d y} \frac{d f}{d t}=w^{\prime}\left(f f^{\prime}(t)\right.\right.
\end{aligned}
$$

