Sunday, 12 January 2020

Consider the field V= e_x , which can have vector notation A= ye_x , but also

 $\frac{1}{A} = \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{2}{2} \frac{$

In gloval, one an add VY to the field, as

 $\nabla x \left(\nabla \psi \right) = 0$

2) Taking the divergence of v thould result in O.

 $\nabla \cdot \left(\nabla f \times \nabla g \right) =$ $\left(\nabla \chi \left(\nabla f \right) \right) \cdot \nabla g - \nabla f \cdot \left(\nabla \chi \left(\nabla g \right) \right)$

 $\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y} - \frac{\partial}{\partial y} \cdot \frac{\partial}{\partial y} = 0$

Ais a verter potential of & because

 $\nabla x A = \nabla x (f \nabla y)$ $= f (\nabla x (\partial y)) + (\nabla f) \times \nabla y$

 $= f(Q) + \nabla f x \nabla g$ $= \nabla f \times \partial g = V$

3) Taking the diverghce of V:

 $\nabla \cdot V = \nabla \cdot (\underline{a} \times \underline{x})$ $= (\nabla x \underline{a}) \cdot \underline{x} - \underline{a} \cdot (\nabla x \underline{x})$ $= (\nabla x \underline{a}) \cdot \underline{x} - \underline{a} \cdot \underline{o}$ $= (\nabla x \underline{a}) \cdot \underline{x}$ $= (\nabla x \underline{a}) \cdot \underline{x}$

- 0, so the field is solenoidal

A=f(x)xthe $\nabla xA = \nabla x (f(x)x)$ $= \nabla x(fx)$

 $\frac{1}{2} \left(\nabla x \mathcal{X} \right) + \left(\nabla f \right) x \mathcal{Z}$

= $(\nabla f) \times x$ which is equal to y = a